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Icebreaker

Please tell us:
▶ Your name
▶ Where are you joining us from?
▶ Would you choose the power of flight or invisibility?

▶ Stolen from This American Life

https://www.thisamericanlife.org/178/superpowers


▶ Assumption: All processes of
diversification affect each lineage
independently

phylopic.org CC0

http://phylopic.org/


▶ Assumption: All processes of
diversification affect each lineage
independently

phylopic.org CC0

http://phylopic.org/


These “shared” or “burst” divergences violate assumption of independent divergences

phylopic.org CC0

https://phylopic.org/


These “shared” or “burst” divergences violate assumption of independent divergences

phylopic.org CC0

https://phylopic.org/


These “shared” or “burst” divergences violate assumption of independent divergences

phylopic.org CC0

https://phylopic.org/


These “shared” or “burst” divergences violate assumption of independent divergences

phylopic.org CC0

https://phylopic.org/


These “shared” or “burst” divergences violate assumption of independent divergences

phylopic.org CC0

https://phylopic.org/


Digressive Poll

I think polytomies/multifurcations are:
1. Useful model for representing phylo uncertainty, but not evolutionary patterns
2. Useful model of evolutionary patterns predicted by some diversification processes
3. Rubbish



These “shared” or “burst” divergences violate assumption of independent divergences

phylopic.org CC0

https://phylopic.org/


Biogeography
▶ Environmental changes that affect

whole communities of species
Epidemiology
▶ Transmission at social gatherings

Genome evolution
▶ Duplication of a chromosome segment

harboring a gene family



Why account for shared divergences?

1. Improve inference

2. Provide a framework for
studying processes of
co-diversification

True history

τ1τ2τ3

Current tree model

τ1τ2 τ3τ4 τ5τ6 τ7 τ8

J. R. Oaks et al. (2022). PNAS 119: e2121036119

http://dx.doi.org/10.1073/pnas.2121036119
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Our approach:

Generalize the space of trees considered during phy-
logenetic inference

Dr. Perry Wood, Jr.



Generalizing tree space



Generalizing tree space
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Generalizing tree space

nτ = 3 nτ = 2 nτ = 1
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Generalized tree distribution

▶ All topologies equally probable
▶ Parametric distribution on age

of root
▶ Beta distributions on other div

times

τ0

τ1 ∼ Beta(τ0, τ3,α, β)*

τ2 ∼ Beta(τ0, τ3,α, β)*

τ3 ∼ Beta(τ0, τ4,α, β)

τ4 ∼ Gamma(k , θ)*

IHGFEDCBA

t6

t3

t1

t2t4

t5

J. R. Oaks et al. (2022). PNAS 119: e2121036119

http://dx.doi.org/10.1073/pnas.2121036119


Inferring trees with shared divergences

Split

Merge

Reversible-jump MCMC

J. R. Oaks et al. (2022). PNAS 119: e2121036119

http://dx.doi.org/10.1073/pnas.2121036119


Validating rjMCMC with 7-leaf tree
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Number of times each topology sampled

D
en

si
ty

Binom(5e+07, 1/127,569)
MCMC

χ2 = 128,046
p = 0.172

The rjMCMC algorithms sample the expected generalized tree distribution

J. R. Oaks et al. (2022). PNAS 119: e2121036119

http://dx.doi.org/10.1073/pnas.2121036119


J. R. Oaks et al. (2022). PNAS 119: e2121036119

Ecoevolity
Estimating evolutionary coevality

J. R. Oaks (2019). Systematic Biology 68: 371–395

▶ Tree model
▶ rjMCMC sampling of generalized tree distribution

▶ Likelihood model

▶ CTMC model of characters evolving along genealogies
▶ Infer species trees by analytically integrate over genealogies1

▶ Goal: Co-estimation of phylogeny and shared divergences from genomic data

1 D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932

http://dx.doi.org/10.1073/pnas.2121036119
http://dx.doi.org/10.1093/sysbio/syy063
http://dx.doi.org/10.1093/molbev/mss086
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Q =

(1, 0) (1, 1) (2, 0) (2, 1) · · · (n, n)
(1, 0) · · · · ·
(1, 1) · · · · ·
(2, 0) · · · · ·
(2, 1) · · · · ·

...
(n, n) · · · · ·

Q(n,r);(n,r−1) = (n − r + 1)v , mutation,

Q(n,r);(n,r+1) = (r + 1)u, mutation,

Q(n,r);(n−1,r) = (n−1−r)n
2Ne (u+v) , coalescence,

Q(n,r);(n−1,r−1) = (r−1)n
2Ne (u+v) , coalescence,

Q(n,r);(n,r) = − (n−1)n
2Ne (u+v) − (n − r)v − ru.

▶ eQt to keep track of all conditional probabilites along each branch (Carathéodory-Fejér method1)
▶ At root, get likelihood of population tree integrated over all possible gene trees and mutational

histories2

1 T. Schmelzer et al. (2007). Electronic Transactions on Numerical Analysis 29: 1–18
2 D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932
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J. R. Oaks et al. (2022). PNAS 119: e2121036119

Ecoevolity
Estimating evolutionary coevality

J. R. Oaks (2019). Systematic Biology 68: 371–395

▶ Tree model
▶ rjMCMC sampling of generalized tree distribution

▶ Likelihood model
▶ CTMC model of characters evolving along genealogies
▶ Infer species trees by analytically integrate over genealogies1

▶ Goal: Co-estimation of phylogeny and shared divergences from genomic data

▶ Does it work?

1 D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932

http://dx.doi.org/10.1073/pnas.2121036119
http://dx.doi.org/10.1093/sysbio/syy063
http://dx.doi.org/10.1093/molbev/mss086
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Methods: Simulations

▶ Simulated 100 data sets with 50,000 base
pairs

▶ Analyzed each data set with:
▶ MG = Generalized tree model
▶ MIB = Independent-bifurcating tree model

▶ Simulated 100 data sets where topology
and div times randomly drawn from MG
and MIB
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Results: random MG trees
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Results: random MIB trees
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MG = Generalized model MIB = Independent-bifurcating model
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Did fragmentation of islands
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Cyrtodactylus
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