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Icebreaker

Please tell us:
» Your name

» Where are you joining us from?
» Would you choose the power of flight or invisibility?
» Stolen from This American Life


https://www.thisamericanlife.org/178/superpowers
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These “shared” or “burst” divergences violate assumption of independent divergences
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Digressive Poll

| think polytomies/multifurcations are:

1. Useful model for representing phylo uncertainty, but not evolutionary patterns

2. Useful model of evolutionary patterns predicted by some diversification processes
3. Rubbish
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These “shared” or “burst” divergences violate assumption of independent divergences
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Biogeography
» Environmental changes that affect
whole communities of species
Epidemiology
» Transmission at social gatherings
Genome evolution

» Duplication of a chromosome segment
harboring a gene family




Why account for shared divergences?

J. R. Oaks et al. (2022). PNAS 119: 2121036119


http://dx.doi.org/10.1073/pnas.2121036119

Why account for shared divergences?

True history Current tree model

1. Improve inference

J. R. Oaks et al. (2022). PNAS 119: €2121036119


http://dx.doi.org/10.1073/pnas.2121036119

Why account for shared divergences?

True history Current tree model

1. Improve inference

2. Provide a framework for
studying processes of
co-diversification

J. R. Oaks et al. (2022). PNAS 119: €2121036119
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Biogeography
» Environmental changes that affect
whole communities of species

Epidemiology
» Transmission at social gatherings
Genome evolution

» Duplication of a chromosome segment
harboring a gene family




Biogeography
» Environmental changes that affect
whole communities of species
Epidemiology
» Transmission at social gatherings
Genome evolution
» Duplication of a chromosome segment
harboring a gene family

These processes are interesting!




Our approach:

Generalize the space of trees considered during phy-
logenetic inference

Dr. Perry Wood, Jr.






Generalizing tree space
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Generalized tree distribution
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Inferring trees with shared divergences
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J. R. Oaks et al. (2022). PNAS 119: 2121036119
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Validating rfMCMC with 7-leaf tree

Binom(5e+07, 1/127,569)

Density
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The rjMCMC algorithms sample the expected generalized tree distribution

J. R. Oaks et al. (2022). PNAS 119: €2121036119
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Phycoitval Ecoevolity

Phylogenetic coevality Estimating evolutionary coevality

J. R. Oaks et al. (2022). PNAS 119: €2121036119 J. R. Oaks (2019). Systematic Biology 68: 371-395

> Tree model
» riMCMC sampling of generalized tree distribution

! D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917-1932


http://dx.doi.org/10.1073/pnas.2121036119
http://dx.doi.org/10.1093/sysbio/syy063
http://dx.doi.org/10.1093/molbev/mss086

Phycoitval Ecoevolity

Phylogenetic coevality Estimating evolutionary coevality

J. R. Oaks et al. (2022). PNAS 119: €2121036119 J. R. Oaks (2019). Systematic Biology 68: 371-395

> Tree model
» riMCMC sampling of generalized tree distribution

» Likelihood model

» CTMC model of characters evolving along genealogies
> Infer species trees by analytically integrate over genealogies®

! D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917-1932
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Phycoitval Ecoevolity

Phylogenetic coevality Estimating evolutionary coevality

J. R. Oaks et al. (2022). PNAS 119: €2121036119 J. R. Oaks (2019). Systematic Biology 68: 371-395

> Tree model
» riMCMC sampling of generalized tree distribution

» Likelihood model

» CTMC model of characters evolving along genealogies
> Infer species trees by analytically integrate over genealogies®

» Goal: Co-estimation of phylogeny and shared divergences from genomic data

! D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917-1932
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T. Schmelzer et al. (2007). Electronic Transactions on Numerical Analysis 29: 1-18
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(n,r)=1(31)
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> @ to keep track of all conditional probabilites along each branch (Carathéodory-Fejér method?)
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> @ to keep track of all conditional probabilites along each branch (Carathéodory-Fejér method?)

» At root, get likelihood of population tree integrated over all possible gene trees and mutational

histories

2

! T. Schmelzer et al. (2007). Electronic Transactions on Numerical Analysis 29: 1-18

D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917-1932


http://dx.doi.org/10.1093/molbev/mss086

Phycoitval Ecoevolity

Phylogenetic coevality Estimating evolutionary coevality
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> Tree model
» riMCMC sampling of generalized tree distribution

» Likelihood model

» CTMC model of characters evolving along genealogies
> Infer species trees by analytically integrate over genealogies®

» Goal: Co-estimation of phylogeny and shared divergences from genomic data

! D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917-1932
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Phycoitval Ecoevolity

Phylogenetic coevality Estimating evolutionary coevality

J. R. Oaks et al. (2022). PNAS 119: €2121036119 J. R. Oaks (2019). Systematic Biology 68: 371-395

> Tree model
» riMCMC sampling of generalized tree distribution

» Likelihood model

» CTMC model of characters evolving along genealogies
> Infer species trees by analytically integrate over genealogies®

» Goal: Co-estimation of phylogeny and shared divergences from genomic data
» Does it work?

! D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917-1932
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Methods: Simulations

» Simulated 100 data sets with 50,000 base

pairs
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Methods: Simulations

» Simulated 100 data sets with 50,000 base
pairs
P> Analyzed each data set with:

» M = Generalized tree model
» M,z = Independent-bifurcating tree model
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Methods: Simulations

» Simulated 100 data sets with 50,000 base
pairs
P> Analyzed each data set with:

» M = Generalized tree model
» M,z = Independent-bifurcating tree model

» Simulated 100 data sets where topology
and div times randomly drawn from Mg
and MIB
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@ Mg = Generalized model
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@ Mg = Generalized model ¢ Mg = Independent-bifurcating model
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Mg significantly better at inferring trees with shared divergences
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Independent-bifurcating model
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@ Mg = Generalized model ¢ Mg = Independent-bifurcating model
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@ Mg = Generalized model
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@ Mg = Generalized model ¢ Mg = Independent-bifurcating model
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Results: random Mg trees

Estimated tree length
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Results: random Mg trees
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Results: random Mg trees
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Mg performs well with data simulated on random trees with shared divergences
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Results: random Mg trees

Probability of incorrectly merged divergence times (true model = Mjg)
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Results: random Mg trees
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Posterior probability
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Mg has low false positive rate
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@ Mg = Generalized model ¢ Mg = Independent-bifurcating model
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Generalizing tree space improves MCMC convergence and mixing
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Did fragmentation of islands
promote diversification?

Scan for sea-level

animation
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1702 loci 1033 loci
155,887 sites 94,813 sites
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Take-home points

» We can accurately infer phylogenies with shared divergences with moderately sized data
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Take-home points

» We can accurately infer phylogenies with shared divergences with moderately sized data
sets

» Generalizing tree space avoids spurious support and improves MCMC mixing

» Among Philippine gekkonids, we found support for shared divergences predicted by
sea-level changes
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