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The last 5 years

Generalizing Bayesian phylogenetics to infer shared evolutionary events

The next 5 years
I My vision for a position at the LIB



I Phylogenetics is rapidly becoming the
statistical foundation of biology

I “Big data” present exciting possibilities and
challenges

I Many opportunities to develop new ways to
study biology in light of phylogeny
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Biogeography
I Environmental changes that affect whole

communities of species

Genome evolution
I Duplication of a chromosome segment

harboring gene families
Epidemiology
I Transmission at social gatherings

Endosymbiont evolution (e.g., parasites,
microbiome)
I Speciation of the host
I Co-colonization of new host species
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Why account for shared divergences?

1. Improve inference

2. Provide a framework for
studying processes of
co-diversification

True history

τ1τ2τ3

Current tree model

τ1 τ2 τ3τ4 τ5 τ6 τ7 τ8
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Generalizing tree space
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Generalized tree distribution

I All topologies equally probable
I Parametric distribution on age

of root
I Beta distributions on other div

times

τ0

τ1 ∼ Beta(τ0, τ3,α, β)*

τ2 ∼ Beta(τ0, τ3,α, β)*

τ3 ∼ Beta(τ0, τ4,α, β)

τ4 ∼ Gamma(k , θ)*

IHGFEDCBA

t6

t3

t1

t2t4

t5
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Inferring trees with shared divergences

Split

Merge

Reversible-jump MCMC
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Validating rjMCMC with 7-leaf tree
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Phylogenetic coevality

Phyco val
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Ecoevolity
Estimating evolutionary coevality
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I Tree model
I rjMCMC sampling of generalized tree distribution

I Likelihood model

I CTMC model of characters evolving along genealogies
I Infer species trees by analytically integrate over genealogies1

I Goal: Co-estimation of phylogeny and shared divergences from genomic data

1 D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932
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Methods: Simulations

I Simulated 100 data sets with 50,000
characters

I Analyzed each data set with:
I MG = Generalized tree model
I MIB = Independent-bifurcating tree model

I Simulated 100 data sets where topology and
div times randomly drawn from MG and MIB
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MG = Generalized model MIB = Independent-bifurcating model
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Results: random MG trees
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Results: random MIB trees
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MG = Generalized model MIB = Independent-bifurcating model
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Take-home points

I We can accurately infer phylogenies with shared divergences with moderately sized data
sets

I Generalizing tree space avoids spurious support and improves MCMC mixing
I Among Philippine gekkonids, we found support for shared divergences predicted by

sea-level changes
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Open science: everything is available. . .

Software:
I Phycoeval:

https://github.com/phyletica/ecoevolity
(release coming soon)

Open-Science Notebooks:
I Phycoeval analyses: https:

//github.com/phyletica/phycoeval-experiments
I Gecko RADseq:

https://github.com/phyletica/gekgo phyletica.org/codiv-sanger-bake-off

https://github.com/phyletica/ecoevolity
https://github.com/phyletica/phycoeval-experiments
https://github.com/phyletica/phycoeval-experiments
https://github.com/phyletica/gekgo
http://phyletica.org/codiv-sanger-bake-off
http://phyletica.org/codiv-sanger-bake-off


Vision for LIB position

Phylogenetic theory/methods
I Develop process-based and trait-dependent distributions over the space of generalized trees

Empirical work
I Did the evolution of habitat preference affect the diversification of bent-toed geckos?
I Epidemiological dynamics of “super-spreading” events during the COVID-19 pandemic

Teaching
I Coding to learn evolution



Generalized tree distribution

I Our current distribution over trees is
motivated by mathematical convenience

I A process-based distribution would allow us
to learn about parameters that control
diversification processes

I Goal: port MG algorithms to RevBayes and
develop generalized birth-death model

Sebastian Höhna
LMU Munich

τ0

τ1 ∼ Beta(τ0, τ3,α, β)*

τ2 ∼ Beta(τ0, τ3,α, β)*

τ3 ∼ Beta(τ0, τ4,α, β)

τ4 ∼ Gamma(k , θ)*
IHGFEDCBA
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Generalizing the birth-death process

Birth-death basics:
I Lineages speciate at rate λ
I Lineages go extinct at rate µ
I We sample extant lineages with probability ρ

“Birth-death-burst” (BDB) process:
I Include “burst events” that occur at rate λβ
I Each lineage diverges with probability β

I Allow λ, µ, λβ, & β to vary depending on the
traits of lineages across the tree

I Bayesian model-averaging to infer set of
trait-dependent BDB models that best explain
data

tβ
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Birth-death-burst validation
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We have correctly derived the likelihood of trees under the BDB model
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Cyrtodactylus
≈ 380 species

From L. Grismer et al. (2021). Diversity 13:

http://dx.doi.org/10.3390/d13050183


Karst endemism in Cyrtodactylus

I Cyrtodactylus are ecologically diverse,
ranging from generalists to microhabitat
specialists

I Karst-specificity evolved 24 times
I Comprise 25% of species despite tiny

fraction of landscape being karst
I Karst-specific species show remarkable

levels of micro-endemism
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Why high levels of diversity and endemism on karst?
I “Rapid” fragmentation of karst habitat

caused by the uplift and subsequent
erosion of limestone sediment over the
last 30my

I E.g., Major river systems carved through
and isolated limestone karst formations
(Ayeyarwady, Chiang Mai, Mekong, Red,
and Salween)

I Hypothesis: The fragmentation of
limestone karst habitat drove
diversification of karst-specific lineages of
Cyrtodactylus

I Prediction: Increased rate of shared
divergences in karst-adapted lineages

L. Grismer et al. (2021). Diversity 13:
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Why high levels of diversity and endemism on karst?

Plan:
I Access to tissue samples of 368 of the

380 Cyrtodactylus species

I Sequence 5,060 UCE loci
I Apply habitat-dependent BDB model:

Model averaging to infer the posterior set
of habitat-dependent models

I Approximate posterior probability that
karst-specific lineages have higher rate of
shared divergences (λβ)
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Epidemiological dynamics of COVID-19 pandemic

Questions:
I What is the relative contribution of social

gatherings to the spread of SARS-CoV-2?

I Does this vary among variants of the
virus?

I Does this increase during holidays?

nextstrain.org J. Hadfield et al. (2018). Bioinformatics 34: 4121–4123

https://nextstrain.org/
http://dx.doi.org/10.1093/bioinformatics/bty407
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Divergence patterns predicted by gatherings

I Multiple infected people spreading
SARS-CoV-2 at a gathering will create shared
divergences across “transmission tree”

I Shared divergences are a good proxy for
spread at gatherings

Plan:

I Apply strain-dependent BDB model to
regional SARS-CoV-2 sequence datasets

I Estimate relative rate of shared divergences
(λβ/λ)

I Approximate posterior probability that λβ

varies among variants
I Summarize λβ over time to quantify the

effect of holidays
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Teaching: Coding to learn evolution

I Develop coding-to-learn evolution course

I Students use graphical modeling software,
like SLiM, to gain intuition for how
processes of evolution work and interact

I Capstone activity: Design
macroevolutionary scenarios and write
code to simulate genetic data under them

I Use these data for phylogenetic
“bake-off”

I How robust are estimates under the BDB
model when applied to data generated
under very different models?

I Students co-author paper

© 2019 Philipp Messer messerlab.org/slim

https://messerlab.org/slim
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