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These “shared” or “burst” divergences violate assumption of independent divergences
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Biogeography
» Environmental changes that affect
whole communities of species

Epidemiology
» Transmission at social gatherings
Genome evolution

» Duplication of a chromosome segment
harboring a gene family
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These processes are interesting!




Progress on shared divergences: Phycoeval
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Progress on shared divergences: Birth-Death + Bursts
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A. F. Magee et al. (2021). bioRxiv


http://dx.doi.org/10.1101/2021.01.14.426715

Motivating questions

» Did geckos adapted to karst diversify via
fragmentation of karst formations?

Credit: Perry Wood, Jr.; phylopic.org CCO
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Motivating questions

» Did geckos adapted to karst diversify via » Do viral strains differ in ability to
fragmentation of karst formations? spread at social gatherings?
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Motivating questions

» Did geckos adapted to karst diversify via » Do viral strains differ in ability to
fragmentation of karst formations? spread at social gatherings?
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These questions require
state-dependent models

Credit: Perry Wood, Jr.; phylopic.org CCO
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State-dependent model of shared divergences
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Parameters:

» Transition rates between character
State 0 = State 1

» Speciation rate, A (per-lineage)

» Extinction rate, u (per-lineage)

> Rate of "burst events”, 3 (tree-wide)
>

>

State 0 probability of speciation at events, pp
State 1 probability of speciation at events, p;



State-dependent model of shared divergences
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>
> Rate of "burst events”, 3 (tree-wide)
>
>

State 0 probability of speciation at events, pp
State 1 probability of speciation at events, p;

» p18 = Per-lineage expected rate of burst
divergences




Some random example trees
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Both models have same expected rates of state-dependent diversification

0o 1 2 3 4 5 6 7 0

3



What next?

Ideally, full Bayesian inference of state-dependent

:
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What next?

;

Ideally, full Bayesian inference of state-dependent
burst model and tree

That’s a lot of work. . .

Is it worth it?

» Is there information in the trees to detect
shared divergence rates and state-dependent
differences?
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» User-friendly deep learning with trees
real data

tensor
sim. data

» Ammon Thompson & Michael Landis

trained
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output
figures

A. Thompson et al. (2024). Systematic Biology 73: 183-206, M. J. Landis et al. (2025). Systematic Biology. syaf036
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phyddle analyses

» Simulated 100k, trees (95k training, 5k holdout) with 500 extant tips
» Extinct lineages removed

> Speciation rate, A\ ~ Log-uniform(0.01, 1)

» Extinction rate ~ Log-uniform(0.01X, \)

» Two character states
» Transition rate ~ Uniform(0.1),0.7X)

Parameter estimation Model choice
» Burst rate ~ Uniform (0.3, 1.2)\) > Burst rate ~ Uniform(0.2\, \)
» State 0 burst prob ~ Uniform(0.65, 1) » State 0 burst prob ~ Uniform(0.6,1)

» State 1 burst prob ~ Uniform(0.1,0.65) > State 1 burst prob = State 0
OR ~ Uniform(0.0,0.3)



Results: Number of burst events

Parameter estimation Model choice
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The simulated trees do not have large numbers of burst events to learn from



Results: State-dependent burst parameter estimation
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Results: State-dependent burst parameter estimation
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Results: State-dependent burst model choice
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Results: State-dependent burst model choice

Lo

expected burst rate for State 0

-0.54

-2.04

Estimated value

-2.54

RMSE: 1.79E-01
Coverage: 95.0%
Coverage target: 95.0%

Estimated value

Estimated value

=25 72‘,0 71‘.,5 71‘.0 -0.5
True value
Log birth rate

0 {RMSE: 2.76E-02
Coverage: 95.1%
Coverage target: 95.0%

-2.0 7]‘.,5 —1‘40 -0.5
True value

Estimated value

Log expected burst rate for State 1
0.0 {RMSE: 4.89E-01
Coverage: 94.4%
Coverage target: 95.0%

IS
>

0
>

b
>

IS
S

-3 !Z —‘1 0
True value
Log death rate

RMSE: 1.20E-01
-0.5 | Coverage: 94.6%
Coverage target: 95.0%

-1.04

-1.54

2.04

-2.54

23.04

-3.54

-4.0 T T T T T T T T
-4.0 -35 -3.0 -25 -2.0 -1.5 -1.0 -0.5
True value

Estimated number

Estimated value

Number of burst rates

1 2
True number

Log rate of state transitions

RMSE: 7.39€-02
Coverage: 94.7%
Coverage target: 95.0%

25 -20 -15 -l0 -05
True value



Results: State-dependent burst model choice
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Take-homes

Trees generated by a BD model with state-dependent burst rates have information about
those burst rates

phyddle is a user-friendly tool for quickly experimenting with new (hair-brained) phylogenetic
models

Caveats:
» Analyses assumed no model violations
> Trees aren't observable!



Next steps

Introduce polytomies into burst events
» Burst-y processes predict them

» E.g., Do rising sea levels always split one island into two?
» E.g., Does a carrier always infect one other individual at a social gathering?
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Introduce polytomies into burst events
» Burst-y processes predict them

» E.g., Do rising sea levels always split one island into two?
» E.g., Does a carrier always infect one other individual at a social gathering?

Develop full Bayesian implementation of state-dependent shared divergence models

» Learn from actual data (sequences) while integrating phylo uncertainty
» Can make probability statements about events within the tree
» The neural network is trained on random trees



Open science: everything is available. ..

Simulator: Open-science notebook:

github.com/phyletica/SDSDsim github.com/phyletica/SDSDsim-phyddle-experiments


https://github.com/phyletica/SDSDsim
https://github.com/phyletica/SDSDsim-phyddle-experiments
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