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Biogeography
▶ Environmental changes that affect

whole communities of species
Epidemiology
▶ Transmission at social gatherings

Genome evolution
▶ Duplication of a chromosome segment

harboring a gene family

These processes are interesting!
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Progress on shared divergences: Phycoeval

Split

Merge

▶ Bayesian inference of trees with shared
divergences
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Progress on shared divergences: Birth-Death + Bursts

▶ Andrew Magee & Sebastian Höhna
▶ Likelihood of tree under BD model with

“burst” events

A. F. Magee et al. (2021). bioRxiv

http://dx.doi.org/10.1101/2021.01.14.426715


Motivating questions
▶ Did geckos adapted to karst diversify via

fragmentation of karst formations?

▶ Do viral strains differ in ability to
spread at social gatherings?

These questions require
state-dependent models

Credit: Perry Wood, Jr.; phylopic.org CC0

https://perryleewoodjr.com/
https://phylopic.org/


Motivating questions
▶ Did geckos adapted to karst diversify via

fragmentation of karst formations?
▶ Do viral strains differ in ability to

spread at social gatherings?

These questions require
state-dependent models

Credit: Perry Wood, Jr.; phylopic.org CC0

https://perryleewoodjr.com/
https://phylopic.org/


Motivating questions
▶ Did geckos adapted to karst diversify via

fragmentation of karst formations?
▶ Do viral strains differ in ability to

spread at social gatherings?

These questions require
state-dependent models

Credit: Perry Wood, Jr.; phylopic.org CC0

https://perryleewoodjr.com/
https://phylopic.org/


State-dependent model of shared divergences

Parameters:
▶ Transition rates between character

State 0 ⇆ State 1
▶ Speciation rate, λ (per-lineage)
▶ Extinction rate, µ (per-lineage)
▶ Rate of “burst events”, β (tree-wide)
▶ State 0 probability of speciation at events, p0
▶ State 1 probability of speciation at events, p1

▶ p1β = Per-lineage expected rate of burst
divergences
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Some random example trees
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Both models have same expected rates of state-dependent diversification



What next?

Ideally, full Bayesian inference of state-dependent
burst model and tree

That’s a lot of work. . .

Is it worth it?
▶ Is there information in the trees to detect

shared divergence rates and state-dependent
differences?
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▶ User-friendly deep learning with trees
▶ Ammon Thompson & Michael Landis

A. Thompson et al. (2024). Systematic Biology 73: 183–206, M. J. Landis et al. (2025). Systematic Biology. syaf036

http://dx.doi.org/10.1093/sysbio/syad074
http://dx.doi.org/10.1093/sysbio/syaf036


phyddle analyses

▶ Simulated 100k, trees (95k training, 5k holdout) with 500 extant tips
▶ Extinct lineages removed

▶ Speciation rate, λ ∼ Log-uniform(0.01, 1)
▶ Extinction rate ∼ Log-uniform(0.01λ, λ)
▶ Two character states

▶ Transition rate ∼ Uniform(0.1λ, 0.7λ)

Parameter estimation

▶ Burst rate ∼ Uniform(0.3λ, 1.2λ)
▶ State 0 burst prob ∼ Uniform(0.65, 1)
▶ State 1 burst prob ∼ Uniform(0.1, 0.65)

Model choice

▶ Burst rate ∼ Uniform(0.2λ, λ)
▶ State 0 burst prob ∼ Uniform(0.6, 1)
▶ State 1 burst prob = State 0

OR ∼ Uniform(0.0, 0.3)



Results: Number of burst events
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The simulated trees do not have large numbers of burst events to learn from
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Results: State-dependent burst parameter estimation
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Results: State-dependent burst model choice
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Results: State-dependent burst model choice

1 2
True number

1

2

Es
tim

at
ed

 n
um

be
r

0.76 0.19

0.24 0.81

Number of burst rates

0.0

0.2

0.4

0.6

0.8

1.0

0 1
True

0

1

Es
tim

at
ed

0.58 0.38

0.42 0.62

Root state

0.0

0.2

0.4

0.6

0.8

1.0

Estimating burst model better than ancestral state**



Take-homes

Trees generated by a BD model with state-dependent burst rates have information about
those burst rates

phyddle is a user-friendly tool for quickly experimenting with new (hair-brained) phylogenetic
models

Caveats:
▶ Analyses assumed no model violations
▶ Trees aren’t observable!



Next steps

Introduce polytomies into burst events
▶ Burst-y processes predict them

▶ E.g., Do rising sea levels always split one island into two?
▶ E.g., Does a carrier always infect one other individual at a social gathering?

Develop full Bayesian implementation of state-dependent shared divergence models
▶ Learn from actual data (sequences) while integrating phylo uncertainty
▶ Can make probability statements about events within the tree

▶ The neural network is trained on random trees
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Open science: everything is available. . .

Simulator:

github.com/phyletica/SDSDsim

Open-science notebook:

github.com/phyletica/SDSDsim-phyddle-experiments

https://github.com/phyletica/SDSDsim
https://github.com/phyletica/SDSDsim-phyddle-experiments
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