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▶ Phylogenetics is rapidly becoming the
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Biogeography
▶ Environmental changes that affect whole

communities of species

Genome evolution
▶ Duplication of a chromosome segment

harboring gene families
Epidemiology
▶ Transmission at social gatherings

Endosymbiont evolution (e.g., parasites,
microbiome)
▶ Speciation of the host
▶ Co-colonization of new host species
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Why account for shared divergences?

1. Improve inference

2. Provide a framework for
studying processes of
co-diversification

True history

τ1τ2τ3

Current tree model

τ1τ2 τ3τ4 τ5τ6 τ7 τ8

J. R. Oaks et al. (2022). PNAS 119: e2121036119

http://dx.doi.org/10.1073/pnas.2121036119
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Approaches to the problem
A pairwise approach (keep it “simple”)
A fully phylogenetic approach
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Challenges to accounting for shared divergences

1. Likelihood for genomic data is
tricky

2. Lots of possible trees of
different dimensions
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▶ Conditional on “population tree” (T ), model “gene trees” (G) using coalescent

▶ Coalescent is a stochastic model of shared inheritance (continuous-time Markov chain =
CTMC)

▶ Gene tree branching patterns are a function of population size

▶ Conditional on G , model mutation as a CTMC
▶ Genetic characters provide information about G
▶ G informs T (population sizes, divergence times, and relationships)
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▶ “Standard” hierarchical approach

▶ Calculate p(genetic data | G) × p(G | T )
▶ Use numerical integration (MCMC) to co-estimate both

▶ But, G and T are highly correlated
▶ As the number of loci (gene trees) increases, MCMC falls apart
▶ Can we integrate G analytically?
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Q(n,r);(n−1,r) = (n−1−r)n
2Ne (u+v) , coalescence,

Q(n,r);(n−1,r−1) = (r−1)n
2Ne (u+v) , coalescence,

Q(n,r);(n,r) = − (n−1)n
2Ne (u+v) − (n − r)v − ru.

▶ eQt to keep track of all conditional probabilites along each branch (Carathéodory-Fejér method1)
▶ At root, get likelihood of population tree integrated over all possible gene trees and mutational

histories2

1 T. Schmelzer and L. N. Trefethen (2007). Electronic Transactions on Numerical Analysis 29: 1–18
2 D. Bryant et al. (2012). Molecular Biology and Evolution 29: 1917–1932

http://dx.doi.org/10.1093/molbev/mss086
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Generalized tree distribution

▶ All topologies equally probable
▶ Parametric distribution on age

of root
▶ Beta distributions on other

divergence times

τ0

τ1 ∼ Beta(τ0, τ3,α, β)*

τ2 ∼ Beta(τ0, τ3,α, β)*

τ3 ∼ Beta(τ0, τ4,α, β)

τ4 ∼ Gamma(k , θ)*

IHGFEDCBA

t6

t3

t1

t2t4

t5

J. R. Oaks et al. (2022). PNAS 119: e2121036119

http://dx.doi.org/10.1073/pnas.2121036119


Inferring trees with shared divergences

Split

Merge

Reversible-jump MCMC

J. R. Oaks et al. (2022). PNAS 119: e2121036119

http://dx.doi.org/10.1073/pnas.2121036119


Validating rjMCMC with 7-leaf tree
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Estimating evolutionary coevality
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▶ Tree model
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▶ CTMC model of characters evolving along genealogies
▶ Infer species trees by analytically integrate over genealogies1
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Does it work?



Methods: Simulations

▶ Simulated 100 data sets with 50,000 base
pairs

▶ Analyzed each data set with:
▶ MG = Generalized tree model
▶ MIB = Independent-bifurcating tree model

▶ Simulated 100 data sets where topology and
div times randomly drawn from MG and MIB
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Results: random MG trees
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Results: random MIB trees

Probability of incorrectly merged divergence times (true model = MIB)

Merged times
0.00

0.25

0.50

0.75

1.00
FPR = 0.047

A

Po
st
er
io
r
pr
ob

ab
ili
ty

0.00 0.05 0.10 0.15 0.20

0.00

0.25

0.50

0.75

1.00

B

Time difference

Po
st
er
io
r
pr
ob

ab
ili
ty

0.0 0.1 0.2 0.3

0.00

0.25

0.50

0.75

1.00

C

Midpoint divergence time

Po
st
er
io
r
pr
ob

ab
ili
ty

MG has low false positive rate

J. R. Oaks et al. (2022). PNAS 119: e2121036119

http://dx.doi.org/10.1073/pnas.2121036119


Results: random MIB trees

Probability of incorrectly merged divergence times (true model = MIB)

Merged times
0.00

0.25

0.50

0.75

1.00
FPR = 0.047

A

Po
st
er
io
r
pr
ob

ab
ili
ty

0.00 0.05 0.10 0.15 0.20

0.00

0.25

0.50

0.75

1.00

B

Time difference

Po
st
er
io
r
pr
ob

ab
ili
ty

0.0 0.1 0.2 0.3

0.00

0.25

0.50

0.75

1.00

C

Midpoint divergence time

Po
st
er
io
r
pr
ob

ab
ili
ty

MG has low false positive rate
J. R. Oaks et al. (2022). PNAS 119: e2121036119

http://dx.doi.org/10.1073/pnas.2121036119


MG = Generalized model MIB = Independent-bifurcating model
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Take-home points

▶ We can accurately infer phylogenies with shared divergences

▶ Generalizing tree space avoids spurious support incorrect relationships and improves
MCMC mixing

▶ Among Philippine gekkonids, we found support for shared divergences predicted by
sea-level changes
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Open science: everything is available. . .

Software:
▶ Phycoeval: github.com/phyletica/ecoevolity

(release coming soon)

Open-Science Notebooks:
▶ Phycoeval analyses: github.com/phyletica/phycoeval-experiments
▶ Gecko RADseq: github.com/phyletica/gekgo

https://github.com/phyletica/ecoevolity
https://github.com/phyletica/phycoeval-experiments
https://github.com/phyletica/gekgo


Moving forward: Theory/methods

▶ Develop process-based and
trait-dependent distributions over the
space of generalized trees

▶ “Birth-death-burst” model

▶ Extend generalized tree distribution to
trees that are not ultrametric

▶ Couple generalized tree distribution with
other phylogenetic likelihood models

nextstrain.org J. Hadfield et al. (2018). Bioinformatics 34: 4121–4123

https://nextstrain.org/
http://dx.doi.org/10.1093/bioinformatics/bty407
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Moving forward: Applications

Epidemiological dynamics of “super-spreading”
events during the COVID-19 pandemic
▶ Spread at social gatherings creates shared

and multifurcating divergences in the viral
“transmission tree”

▶ Estimate rate of shared divergences as
proxy for spread via social gatherings

▶ Test if this varies over time, among
regions, and among variants of
SARS-CoV-2
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Stats & Algorithms

n Our team is very cross-functional
o We solve statistical and computational challenges for many stakeholders across Adaptive



Come work with us!

Adaptive Comp Bio Internships!

Scan to internship listing:

www.adaptivebiotech.com/career-listings

https://www.adaptivebiotech.com/career-listings
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Thanks everyone!

▶ Thanks Devang and Duke GCB & CBB!

▶ Bryan Howie and my team at Adaptive
▶ Phyletica Lab (the Phyleticians)
▶ Mark Holder
▶ Rafe Brown
▶ Cam Siler
▶ Lee Grismer

Computation:
▶ Alabama Supercomputer Authority
▶ Auburn University Hopper Cluster

Funding:

Photo credits:
▶ Rafe Brown
▶ Perry Wood, Jr.
▶ PhyloPic

http://phylopic.org/


Questions?

joaks@auburn.edu
@jamoaks

phyletica.org

Scan for slides:

phyletica.org/slides/duke-cbb.pdf
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